2.确保示波器不接任何附件,按ULITITY进行自校,仪器自检通道1,通道2及时基,此过程需花费几分钟,自校顺利通过。
示波器用户在进行幅值/峰值等垂直量测量时,偶然遇到测量结果与预期稍有偏差,测量不够准确的问题,使用户对示波器的测量精度产生了质疑,在这里说说示波器幅值/峰值等垂直量测量为什么出现测量偏差,针对此现状将怎么样改进由此减少测量误差。 客户在使用示波器测量高频信号、强电压、微小信号或者电源纹波、噪声等的幅值/峰值等垂直量时,测量值出现偏差,垂直量测量值偏小或偏大等,使用户对示波器测量准确性产生了质疑。 图1示波器测量疑问 示波器垂直量测量出现偏差的原因归结为以下四点: ① 低频补偿调节与否; ② 示波器的底噪干扰对测量的影响; ③ 示波器的幅频特性曲线差异; ④ 示波器的垂直分辨率对测量的影响。 当然示波器测量精度不一定比得上高
垂直量测量偏差的解决方案介绍 /
前言 现代电子设计面临慢慢的变多的挑战。在数字领域,电路的集成规模慢慢的变大,IO数量慢慢的变多,单板互连密度不断加大;同时芯片内和芯片外时钟速率慢慢的升高,信号边沿慢慢的变快;新技术不断出现,如:PCI Express,Serial ATA,1394B,Fibre Channel,Rapid IO,XAUI,5G~6.25G高速背板等,这样系统和板级的高速问题,信号完整性问题,电磁兼容问题更突出。在射频、微波领域,新技术的出现、频宽的扩展,如:UWB,高精度、宽频雷达,给我们的系统模块设计带来慢慢的变多的挑战。 示波器作为最常用的测试分析工具,也得到了长足的发展。示波器的发展有两个趋势,其一是性能的提升。自从Agilent在20世纪80年
保真度探析 /
一、示波器探头容易损伤的部位 要预防示波器探头故障,就一定要了解示波器探头那些结构易发生故障。根据对损坏电流探头的故障分析,发现容易损坏的探头部位大致有: a、与电流放大器连接的电路板; b、电流探头的磁环坏; c、电流探头的磁环线圈; d、电流探头的滑动夹子的外观损坏; e、电缆线断路。 二、预防示波器探头损坏方法 已经了解示波器探头易损坏的结构,就必然有对应的方法: a、切记不要带电插拔电流探头。 b、磁环是易碎的材料,掉地或使用时用力过猛都容易使它破损。有损伤/损坏的磁环会造成测试不准或不能再测出电流。 c、使用时避免掉地或用力过猛12.磁环线圈比较细,过流会导致线圈烧毁。 d、使用时避免负载过流。 e、电流夹子不对齐,裂
荧光屏位于示波管的终端,它的作用是将偏转后的电子束显示出来,以便观察。在示波器的荧光屏内壁涂有一层发光物质,因而,荧光屏上受到高速电子冲击的地点就显现出荧光。此时光点的亮度决定于电子束的数目、密度及其速度。改变控制极的电压时,电子束中电子的数目将随即改变,光点亮度也就改变。在使用示波器时,不宜让很亮的光点固定出现在示波管荧光屏一个位置上,否则该点荧光物质将因长期受电子冲击而烧坏,从而失去发光能力。 涂有不同荧光物质的荧光屏,在受电子冲击时将显示出不同的颜色和不同的余辉时间,通常供观察一般信号波形用的是发绿光的,属中余辉示波管,供观察非周期性及低频信号用的是发橙黄色光的,属长余辉示波管;供照相用的示波器中,一般都采用发蓝色的短余辉
罗德与施瓦茨公司通过引入新硬件选件R&S FSW-B2000,将高端信号与频谱分析仪R&S FSW的分析带宽扩展至2GHz。该测试方案使得研发人员能够解调并详细分析超宽带信号。目前市场上没有其它设备能够同时提供如此大的分析带宽和高达 67GHz的测试频率范围。此外,R&S FSW还开创了许多测试应用。比如,用户都能够测试通信信号的EVM,或者测试线性调频雷达系统的线性调频率等。 研发人需要大带宽分析宽带信号,诸如WLAN新标准IEEE 802.11ad信号,下一代移动通信5G信号及雷达线性调频信号。R&S FSW是第一款提供便于用户使用的2GHz分析带宽商业解决方案的信号与频谱分析仪。 为分析如此宽带宽的信号,R&S
一、引言 对于学校教学实验以及某些特定需求来说,目前市场上的模拟及数字示波器也许并不适用,价格高昂、体积较大且很多专业功能并不实用。而现在电脑的普及程度也达到了相当的规模,利用电脑以及附加的数采模块实现一个灵活便捷的虚拟示波器能够很好的满足大多数的工作、学习和开发需要,并能通过较低代价的硬件和软件升级实现相当复杂的信号处理功能,能够以较低的成本、较小的体积实现配置灵活的智能仪器组合;可完全与便携电脑结合,构成便携式检测维修工作站。目前已经有计算机并口通信的数据采集器,但是USB的应用日趋广泛和深入,如果将USB功能融合在里面则能轻松实现更高的数据传输率、更方便的使用方式,更为优越的体现出虚拟仪器的性能。 二
本节介绍Multisim虚拟双踪示波器使用 1)将示波器放置在工作平台 将鼠标放在工作台右边边框上万用表图标下方,选择图标,直至显示“Oscilloscope”,此为虚拟双踪示波器。 操作步骤与万用表相同。 单击此图标,拾取该仪器。 在工作平台合适位置再次单击鼠标左键,则可将双踪示波器放置在此位置。 双踪示波器使用 示波器图标下方标识有A、B两个通道。 选择A通道的“+”与信号源“+”端相连接,另一端与地相连接,如图1所示。 图1示波器测信号波形 点击“运行”按钮后,双击示波器图标“XSC1”,出现“Oscilloscope—XSC1”对话框,此为示波器面板,如图2所示。 图2 双踪示波器面板 如果波形抖动得厉害,可以
的使用 /
匹配传感器输出和 ADC 输入范围可能很难,尤其是要面对当今传感器所产生的多种输出电压摆幅时。本文为不同变化范围的差分、单端、单极性和双极性信号提供简便但高性能的 ADC 输入驱动器解决方案,本文的所有电路採用了 LTC2383-16 ADC 单独工作或与 LT6350 ADC 驱动器一起工作来实现 92dB SNR。 LTC2383-16 是一款低噪声、低功率、1Msps、16 位 ADC,具备 ±2.5V 的全差分输入范围。LT6350 是一款轨至轨输入和输出的、低噪声、低功率单端至差分转换器/ADC 驱动器,具备快速稳定时间。运用 LT6350,0V 至 2.5V、0V 至 5V 和 ±10V 的单端输入范围可以很容易转
驱动低功率、1Msps、±2.5V 差分输入、16 位 ADC /
东芝1200V SIC SBD “TRSxxx120Hx系列” 助力工业电源设备高效
2024 瑞萨电子MCU/MPU工业技术研讨会——深圳、上海站, 火热报名中
Follow me第二季第4期来啦!与得捷一起解锁蓝牙/Wi-Fi板【Arduino Nano RP2040 Connect】超能力!
嵌入式工程师AI挑战营(进阶):基于RV1106部署InsightFace算法,实现多人的实时人脸识别
艾睿电子技术解决方案展 2024 — 携手共建更智能绿色未来,火热报名中!
作者:是德科学技术产品营销经理 Michelle Tate在工程领域,精度是核心要素。无论是对先进电子设备执行质量和性能检验测试,还是对复杂系统来进行调 ...
自v2 10版本开始TekScope软件及泰克示波器(如4B系列MSO)引入了TekHSI高速接口技术,利用该项技术您可以以最高比SCPI快10倍的速度传输波形 ...
软启动晶闸管是一种用于控制电动机启动和运行的功率电子器件,它具有启动平稳、运行效率高、控制方便等优点。在实际应用中,软启动晶闸管的 ...
万用表是电工常用的测量工具,可拿来测量电压、电流、电阻等参数。软启动器是一种用于电动机启动的设备,能够大大减少电动机启动时的电流冲击 ...
非接触式温度传感器,顾名思义,是一种无需与被测物体非间接接触即可测量温度的传感器。这种传感器在工业、医疗、科研等领域存在广泛的应用。 ...
使用 Analog Devices 的 LT1086CT-2.85 的参考设计
AM2DM-1205SH60-NZ 5 Vout、2W 单路输出 DC-DC 转换器的典型应用
BB-BBLK-000-ITEMP,基于 AM3358BZCZA100 Sitara AM3358 处理器的嵌入式 Planet BeagleBone Black Industrial Temp
LTC2945CMS-1 在 -48V 系统中使用低侧检测进行电源监控的典型应用
LT1634ACS8-2.5 超准确 ±4.096V 输出电压基准的典型应用
东芝的新款150V N沟道功率MOSFET具有业界领先的低导通电阻和改进的反向恢复特性
下载泰克电源设计测试方案+图文攻略 帮助工程师解决电源效率问题。有好礼
站点相关:信号源与示波器分析仪通信与网络视频测试虚拟仪器高速串行测试嵌入式系统视频教程其他技术综合资讯