详细介绍
不能直接提取氧化层电容(Cox)。然而,使用高频电路模型则能够精确提取这些参数。随着业界迈向65nm及以下的节点,对于高性能/低成本数字电路,
减少使用RF技术的建议是在以下特定的假设下提出来: 假设RF技术不能有效地应用,尤其是在生产的环境下,这在过去的确一直是这种情况。
但是,现在新的参数检测系统能快速、准确、可重复地提取RF参数,几乎和DC测试一样容易。最重要的是,通过自动校准、去除处理(de-embedding)以及根据待测器件(DUT)特性进行参数提取,探针接触特性的自动调整,已经可以在一定程度上完成RF的完整测试。这方面的发展使得不必需要RF专家来保证得到好的测试结果。在生产实验室,根据中间测试结果或者操作需要,自动探针台和测试控制仪能完成过去需要人为干涉的事情。全球范围内,已经有7家半导体公司验证了这种用于晶圆RF生产测试的系统。
无论你是利用III-V簇晶圆生产用于手机配件的RF芯片,还是利用硅技术生产高性能模拟电路,在研发和生产中预测最终产品的性能和可靠性,都需要晶圆级RF散射参数(s)的测量。这些测试对DC数据是重要的补充,相对于单纯的DC测试,它用更少的测试却能提供明显更多的信息。实际上,一个两通道的s参数扫描能同时提取阻抗和电容参数,而采用常规DC方法,则需要分开测试,甚至需要单独的结构以分离工艺控制需要的信息。
功放RF芯片的功能测试是这种性能的另外一种应用。这一些器件很复杂,然而价格波动大。生产中高频低压的测试条件排除了通常阻碍晶圆级测试的功耗问题。也不存在次品器件昂贵的封装费用。已知良品芯片技术也能应用于晶圆级测试中,它能够明显改进使用RF芯片的模块的良率。
芯片制造商也可通过晶圆级RF测试来提取各种高性能模拟和无线电路的品质因数。比如滤波器、混频器以及振荡器。SoC(System-on-chip)器件制造商希望这种子电路测试技术能够降低总体的测试成本。
130nm节点以下的高性能逻辑器件中,表征薄SiO2和高介电常数(high-k)栅介质的等效氧化层厚度(EOT)最重要。RF测试在介电层的精确建模方面扮演了重要角色,它能够去除掉寄生元件,而这种寄生效应在传统的二元模型中将阻碍C-V数据的正确表示。中高频 (MFCV, HFCV) 电容测量技术不可能因为仪器而对测试引入串联阻抗。
产品研发阶段的设计工程师采用的仿真模型,包括从s参数数据提取的RF参数和I-V/C-V数据。先进的设计工具要求的是统计模型,不是单个的一套参数。这使得良率和功能特性的最优化成为可能。如果I-V和C-V参数基于统计结果,而RF不是的话,那么这个模型就是非物理的和不可靠的。
在有些情况下,比如电感、I-V和C-V信息的价值都非常有限。但是,Q在使用的频率之下,作为电感表征和控制的参数,则具备极高的价值。I-V和C-V测试中面临的挑战是要理解,何时它是产品特性的主要表征,何时不是。许多模拟和无线器件特性的只要表征参数是Ft和Fmax。理想的情况下,在第3谐波以外的使用情况下,它们是需要测量并提取出来的RF参数。对于数字和存储器产品,只要器件的模型保持简化,那么I-V和C-V对于有源和无源器件来说都是很有价值的测量项目。前面提到的,栅介质的测量具有复杂的C-V模型。
产品咨询