大部分人会比较关注示波器本身的使用,却忽略了探头的选择。实际上探头是介于被测信号和示波器之间的中间环节,如果信号在探头处就已经失真了,那么示波器做的再好也没用。实际上探头的设计要比示波器难得多,因为示波器内部可以做很好的屏蔽,也不需要频繁拆卸,而探头除了要满足探测的方便性的要求以外,还要保证至少和示波器一样的带宽,难度要大得多。因此最早高带宽的实时示波器刚出现时是没有相应的探头的,又过了一段时间探头才出来。
要选择合适的探头,首要的一点是要了解探头对测试的影响,这这中间还包括2部分的含义:1/探头对被测电路的影响;2/探头造成的信号失真。理想的探头应该是对被测电路没有一点影响,同时对信号没有一点失真的。遗憾的是,没有真正的探头能同时满足这两个条件,通常都需要在这两个参数间做一些折衷。
为了考量探头对测量的影响,我们一般可以把探头模型简单等效为一个R、L、C的模型,把这个模型和我们的被测电路放在一起分析。
首先,探头本身有输入电阻。和万用表测电压的原理一样,为了尽可能减少对被测电路的影响,要求探头本身的输入电阻Rprobe要尽可能大。但由于Rprobe不可能做到无穷大,所以就会和被测电路产生分压,实际测到的电压可能不是探头点上之前的真实电压,这在一些电源或放大器电路的测试中会经常遇到。为了尽最大可能避免探头电阻负载造成的影响,一般要求Rprobe要大于Rsource和Rload的10倍以上。大部分探头的输入阻抗在几十k欧姆到几十兆欧姆间。
其次,探头本身有输入电容。这个电容不是刻意做进去的,而是探头的寄生电容。这个寄生电容也是影响探头带宽的最主要的因素,因为这个电容会衰减高频成分,把信号的上升沿变缓。通常高带宽的探头寄生电容都比较小。理想情况下Cprobe应该为0,但是实际做不到。一般无源探头的输入电容在10pf至几百pf间,带宽高些的有源探头输入电容一般在0.2pf至几pf间。
再其次,探头输入端还会受到电感的影响。探头的输入电阻和电容都比较好理解,探头输入端的电感却经常被忽视,尤其是在高频测量的时候。电感来自于哪里呢?我们大家都知道有导线就会有电感,探头和被测电路间一定会有一段导线连接,同时信号的回流还要经过探头的地线mm探头的地线nH的电感,信号和地线越长,电感值越大。探头的寄生电感和寄生电容组成了谐振回路,当电感值太大时,在输入信号的激励下就非常有可能产生高频谐振,造成信号的失真。所以高频测试时需要严控信号和地线的长度,否则很容易产生振铃。
在了解探头的结构之前,需要先了解一下示波器输入接口的结构,因为这里是连接探头的地方,示波器的输入接口电路和探头共同组成了我们的探测系统。
大部分的示波器输入接口采用的是BNC或兼容BNC的形式。示波器的输入端有1M欧姆或50欧姆的匹配电阻。示波器的探头种类很多,但是示波器的的匹配永远只有1M欧姆或50欧姆两种选择,不一样的种类的探头需要不同的匹配电阻形式。
从电压测量的角度来说,为了对被测电路影响小,示波器能够使用1M欧姆的高输入阻抗,但是由于高阻抗电路的带宽很容易受到寄生电容的影响。所以1M欧姆的输入阻抗广泛应用与500M带宽以下的测量。对于更高频率的测量,一般会用50欧姆的传输线欧姆匹配大多数都用在高频测量。